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Abstract This report describes a computer program for
clustering docking poses based on their 3-dimensional (3D)
coordinates as well as on their chemical structures. This is
chiefly intended for reducing a set of hits coming from high
throughput docking, since the capacity to prepare and
biologically test such molecules is generally far more
limited than the capacity to generate such hits. The
advantage of clustering molecules based on 3D, rather than
2D, criteria is that small variations on a scaffold may bring
about different binding modes for molecules that would not
be predicted by 2D similarity alone. The program does a
pose-by-pose/atom-by-atom comparison of a set of docking
hits (poses), scoring both spatial and chemical similarity.
Using these pair-wise similarities, the whole set is clustered
based on a user-supplied similarity threshold. An output
coordinate file is created that mirrors the input coordinate
file, but contains two new properties: a cluster number and
similarity to the cluster center. Poses in this output file can
easily be sorted by cluster and displayed together for visual
inspection with any standard molecular viewing program,
and decisions made about which molecule should be
selected for biological testing as the best representative of
this group of similar molecules with similar binding modes.
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Introduction

Because the number of hits coming out of a high
throughput docking (HTD) analysis usually far exceeds
the number of compounds that can actually be biologically
tested, various filtering procedures are used to reduce the
hit list to attain a much smaller number of compounds that
best represents the whole set. One of the most valuable
procedures is the clustering of molecules, usually based on
2-dimensional (2D) chemical descriptors, which allows the
selection of a few representative compounds from groups of
related molecules. There are a number of algorithms and
programs for performing this [1–7]. 2D clustering is based
on the assumption that similar molecules bind to the target
protein in a similar manner. While generally a reasonable
assumption, there are cases of closely related molecules
binding to proteins in surprisingly different ways (e.g., [8–
10]). One attempt to address this issue for docked poses
was the generation of structural interaction fingerprint
(SIFt) patterns [11], which describe the interactions
between a ligand and the protein to which it is bound.
These can then be clustered by standard fingerprint
clustering methods. These were first used to cluster
multiple potential binding modes of a single ligand
generated by docking, although the method is easily
extended to be used with docking poses from different
ligands against the same protein target.

This report describes a computer program that compares
docked molecules based on the docking poses themselves,
rather than the target protein to which they bind and is like
2D clustering, except that it is based both on chemical and
spatial similarity. Throughout this report a distinction will
be made between “compound” (or “molecule”), which
refers to a 2D structure, atom connection table or SMILES
string and “pose” which refers to a 3D molecular structure
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with a defined conformation and coordinates in 3D space,
for example, after being docked to a protein.

Methods

CLSTR3D is a computer program written in FORTRAN. As
input it requires a set of pose coordinates in .sdf format and,
optionally, the protein structure, in PDB format, to which the
compounds were docked. The molecules being clustered are
typically poses from a high throughput docking (HTD)
experiment and usually represent the single best fit of each
molecule to a specific target protein and therefore are all in a
common 3D reference frame. No fitting (optimization of
molecular overlap) is done to the poses prior to comparison.
The output file mirrors the input file except that two new
properties per pose are added: “cluster_number” and “clus-
ter_similarity”, the number of the cluster that the pose belongs
to and its similarity to the cluster center, respectively.

Chemical similarity

An atomic similarity matrix was created based on the
chemically advanced template search (CATS) fingerprint
developed for scaffold hopping [12]. The functional class
considers whether an atom is lipophilic, an H-bond
acceptor, an H-bond donor, negatively charged, and/or
positively charged. Both the charge and existence of
attached hydrogen atoms of hydrophilic atoms determine
their CATS functional class, so all possibilities were
defined. Examination of vendor catalogs of “drug-like” or
“lead-like” molecules (1.7 million unique compounds)
indicated that such molecules are almost exclusively
composed of relatively few elements: in order of abundance
H, C, N, O, S, F, Cl, Br, P, I, and Si with other elements
accounting for less than 0.0002% of the atoms examined,
mostly boron and metals. In the interest of speed, it was
decided to ignore hydrogen atoms. Although the hydrogen

atoms themselves are not examined, their presence is still
carried by the classification of the non-hydrogen atom to
which they were attached. Seven functional class could be
defined (Table 1).

No cases of hydrophilic atoms with a negative charge
and attached hydrogen atoms were found among the 80
million atoms examined. Hydrophobic atoms with a charge
(very rare, but extant) are no longer considered to be
lipophilic. For the purpose of functional class determina-
tion, both oxygen atoms of a deprotonated carboxylic acid
are considered negatively charged. This is also true for
other negatively charged groups where the charge is
distributed across two or more oxygen atoms (e.g., nitrate,
sulphonate, phosphinate, etc.).

A functional class similarity matrix was created, where
the similarity between functional classes was scored
according to the number of shared fingerprint properties
(Table 2). To highlight exact functional class matches and
down weight more distant relationships, a score of 2sfb,
where “sfb” is the number of shared fingerprint bits
between the two functional class, was used.

Comparing 3D structures

Since the structures being compared typically come from
docking the compounds to the same protein target, the
structures are already in a common 3D reference frame. All
structures are compared pair-wise, atom by atom. An atom
from structure j closest to a specific atom from structure i is
considered matched if their separation is less than 1Å. In
the rare case where more than one atom in structure j is
closer than 1Å from the atom in structure i, only the closest
atom is considered. The score for the matched atoms will be

wtij SM FCi; FCj

� �� � 1:0� dist3
� � ð1Þ

Where SM(FCi,FCj) is the functional class similarity
matrix value (Table 2) between the functional class of atom

Table 1 Functional class definitions

FC Lipo + − HB Acc HB Don description

1 1 0 0 0 0 lipophilic (C/Si/S/halogens)
2 0 0 0 1 0 hydrophilic, uncharged, without hydrogen atoms
3 0 0 0 1 1 hydrophilic, uncharged, with hydrogen atoms
4 0 0 1 1 0 hydrophilic, negative, without hydrogen atoms
5 0 1 0 0 0 hydrophilic, positive, without hydrogen atoms
6 0 1 0 0 1 hydrophilic, positive, with hydrogen atoms
7 0 0 0 0 0 phosphorus, hexavalent sulfur

Functional classes (FC) are based on the following atomic properties: lipophilicity (lipo), charge (+/−), hydrogen bond acceptor (HB_Acc), and
hydrogen bond donor (HB_Don), where “1” indicates that the functional class possesses this property and “0” indicates that it does not. Note that
only the elements H, C, N, O, S, P, F, Cl, Br, I, and Si are acceptable, which covered >99.9998% of the 1.7 million drug-like and lead-like vendor
compounds (80 million atoms) examined, although only 94.8% of the NCI collection. All such possible functional classes are covered except
negative, hydrophilic with hydrogen atoms, for which no examples were found.
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i (FCi) and functional class of atom j (FCj), “dist
3” is the

cube of the distance between the atoms and wtij is an
optional weighting factor based on the interaction of atoms
i and j with the protein (see below). 1.0 is the cube of the
maximum distance (1Å). The cube of the distance is used
since the probability of finding an atom purely by chance
increases by the volume of the sphere defined by the search
distance. If no atom in structure j is found within 1Å of
the examined atom in structure i, a score of 0 is assigned. The
atom-by-atom scores are summed and divided by the
maximum possible score (= Σwtij × 32 × number of atoms
in structure i) to get a 3D similarity score. Such a score can
range from 1.0 (perfect match in 3D space and functional
class) to 0.0 for no atom in structure j found within 1Å of
any atom in structure i. In this way, an N × N matrix of
similarity comparisons is built up, where N is the number
of poses being compared. It should be noted that only
identical structures can give similarities of 1.0. Poses that
match perfectly in functional class will not match perfectly
spatially because of differences in bond lengths. It should
also be noted that comparing pose A to pose B will not
necessarily give the same score as comparing pose B to
pose A. In particular, if molecule A is a substructure of
molecule B and overlaps perfectly with that part of
molecule B in 3D, then comparing A to B will give a 3D
similarity of 1.0, whereas comparing B to A will give a far
lower score, since some of the atoms of pose B will have no
corresponding atoms in pose A. Therefore, when comparing
two poses, the larger of the two will be compared to the
smaller and the results placed in cells (i,j) and (j,i,). If the
two poses are the same size (identical number of non-
hydrogen atoms), then only the first pose will be fit to the
second one. This cuts the matrix calculation time by
roughly half, generates a symmetrical square matrix and
penalizes comparisons of molecules of vastly different
sizes, with the advantage that the final clusters are more
likely to contain molecules of similar size. A simple
example of a 3D similarity calculation is worked out in
Fig. 1 and Table 3.

Weights can be applied to the individual atoms based on
the number of interactions they make with the protein. A

simple counting of interactions is done; no attempt is made
to estimate the strength of the interaction. If the distance
between a protein atom and a ligand atom is less than 1.2×
their combined van der Waals radii, an interaction is
counted. The 20% increase in van der Waals radii is to
compensate for possible coordinate error and for hydrogen
atoms that may be attached to the atoms examined, since
only non-hydrogen atoms are examined. Weighting may be
desired since atoms interacting with the protein are more
important to binding than those exposed to solvent. The
weight applied is [number of protein interactions + 1], so
that all atoms are still considered, but weighted differently.
When comparing two structures, the total weight given to
an atomic comparison is the sum of the weights of both
matching atoms. If no matching atom is found, the weight
is twice the weight of the search atom. Only non-hydrogen
protein atoms are considered. Solvent and other non-protein
molecules are ignored.

Clustering

Since all similarity comparisons have been pre-calculated,
singletons can be quickly identified as poses with no
similarity score above the user-defined threshold. They are
flagged as such and removed from further consideration.
The clustering algorithm employed is similar to the quality
threshold cluster method developed by Heyer et al. for gene
clustering [13]. Cluster centers are found by examining the
pose similarity matrix for the pose with the largest number
of “similar” structures among the other structures, i.e.,
structures with similarity scores greater than the user-

Fig. 1 Spatial comparison of
two docked molecules: mole-
cule A (gray carbon atoms,
Arabic numerals) and molecule
B (black carbon atoms, Roman
numerals). Scoring their 3D
similarity atom-by-atom is illus-
trated in Table 3

Table 2 Atomic similarity matrix of functional classes

FC 1 2 3 4 5 6 7 FC description

1 32 8 4 4 8 4 16 lipophilic (C/Si/S/halogens)
2 8 32 16 16 8 4 16 hydrophilic, uncharged, without hydrogen atoms
3 4 16 32 8 4 8 8 hydrophilic, uncharged, with hydrogen atoms
4 4 16 8 32 4 2 8 hydrophilic, negative, with hydrogen atoms
5 8 8 4 4 32 16 16 hydrophilic, positive, without hydrogen atoms
6 4 4 8 2 16 32 8 hydrophilic, positive, with hydrogen atoms
7 16 16 8 8 16 8 32 phosphorus, hexavalent sulfur

Each similarity element = 2sfb , where sfb = number of shared fingerprint bits between the two functional classes).
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defined threshold. In the case of structures with the same
number of similar structures, the sum of the similarity
scores themselves is used to select the cluster center. All
poses with a similarity score greater than the threshold are
then placed in this cluster. The process is repeated, ignoring

singletons and molecules already assigned to other clusters,
until no molecule pairs are found within the user-defined
similarity threshold (Fig. 2). The advantages of this
clustering method over the popular and probably faster K-
means clustering [14] is that the program determines both

Fig. 2 Simple example of how clustering is carried out. a) A set of
points to be clustered. The two red points are beyond the distance
(similarity) threshold of all other points and therefore can be
immediately be classified as “absolute” singletons. b) The first cluster
center is selected as that point with the most other points within the
distance threshold (circle). All points within the distance threshold
(green points) are marked as members of this cluster and removed
from further consideration. c) Second cluster center selected, which

only has two other members (magenta points). At this stage there is
still a single point left unclustered. Although it is within the distance
threshold of other points, it is not within the distance threshold of any
cluster center, therefore it is flagged as a singleton. d) Refinement
step: one point originally assigned to the first (green) cluster is found
to be actually closer to the second (magenta) cluster center and
changes cluster membership

Table 3 Similarity calculation example

Molecule A Molecule B partial max atom

Atom Element FC Atom Element FC Dist. 1.0-d3 SM(B,A) score score Score

1 S 1 II C 1 0.641 0.737 32 23.6 32 0.737
2 C 1 IV C 1 0.166 0.995 32 31.8 32 0.995
3 C 1 V C 1 0.043 1.000 32 32.0 32 1.000
4 C 1 VI C 1 0.199 0.992 32 31.7 32 0.992
5 N 3 VII N 6 0.429 0.921 8 7.4 32 0.230
6 C 1 – – – >1.0 0.000 0 0.0 32 0.000
7 N 3 X O− 4 0.298 0.974 8 7.8 32 0.244
8 C 1 IX C 1 0.180 0.994 32 31.8 32 0.994
9 O 2 XI O− 4 0.123 0.998 16 16.0 32 0.499
10 C 1 VIII C 1 0.028 1.000 32 32.0 32 1.000
11 C 1 XII C 1 0.124 0.998 32 31.9 32 0.998
Total 246.0 352 0.699

Similarity of molecule B (black carbon atoms, Roman numerals) to molecule A (gray carbon atoms, Arabic numerals) from Fig. 1 without protein
interaction weighting. The “atom” column refers to the atom numbers in Fig. 1. “FC” is the function class, as listed in Table 1. “Dist.” is the
distance between an atom in molecule A and the nearest atom in molecule B. Note that no atom in molecule B is closer than 1Å to atom 6 of
molecule A. Note also that although both atoms II and III of structure B are within 1Å of atom 1 of structure A, only the closer atom (#II) is taken
for comparison. “1.0-d3 ” is the distance weighting factor (1Å3 − distance3 ). SM(B,A) is the atomic similarity of two matched atoms as given in
Table 2. In this case all matched atoms have the same functional class, except atoms 5, 7, and 9. The partial score is the distance weighting factor
times the atom similarity, while the max score is a prefect spatial overlap and functional class match (11 x 1.0 x 32 = 352). The atom score is the
partial score divided by 32. The 3D similarity of these two poses is the total of the atom scores = 0.699, with almost all of the dissimilarity being
due to the unmatched atom 6 and the differing atom types (functional classes) of atoms 5, 7, and 9.
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the number of clusters and the cluster centers based on the
poses themselves, reducing the guesswork for the user and
allows the program to always generate the same results
given the same input.

Because cluster members are allocated sequentially,
based on when a cluster center was identified, it may be
that some members of a cluster actually fit better in a later
defined cluster, i.e., are closer to another cluster center. For
this reason, a final check for which cluster each pose best
belongs to is carried out. During this stage some clusters
may disappear because too many of their members are
reassigned to other clusters. If only one member of a cluster
remains at the end of the refinement step, it is relabeled a
singleton. Because of the way cluster memberships are
assigned, this is a rare, but not impossible event.

Finally, a copy of the input pose file is written out in
which two new properties per pose are added: “cluster_-
number” and “cluster_similarity”. Singletons are assigned
to cluster number 99999 and given a cluster similarity of
zero. The order of the poses in the file reflects their order in
the input file, i.e., no sorting of the output poses based on
cluster number or similarity is done.

Examining clusters by activity

It would be of considerable interest to see whether actives
molecules tend to cluster together in 3D separate from
inactive molecules. To examine this, the NCI set of
compounds screened for anti-viral (HIV) activity (http://
dtp.nci.nih.gov/docs/aids/aids_data.html, file aids_conc_
may04.txt) was docked against HIV-1 protease. The
collection consists of 43,850 compounds annotated as
being either “confirmed active” (CA), “confirmed moder-
ately active” (CM), or “confirmed inactive” (CI). Note that
activity is against the whole virus and does not necessarily
imply activity against HIV-1 protease. The compounds
were filtered as before (Table 4), but with less stringent
restrictions due to the small number of compounds: 800 >
MW > 0, no unusual elements, <5 undefined chiral centers
and <13 rotatable bonds. Altogether 34,082 structures
(78%) were accepted. These were expanded for undefined
chiral centers and alternative charge and tautomer states
giving 129,435 total structures. The massive expansion was
primarily due to accepting up to four undefined chiral
centers, resulting in 16 enantiomers each. As before, these
were docked to HIV-1 protease enforcing at least one H-
bond to one of the catalytic aspartic acid residues. After
removing low-scoring isomers, the top scoring 20,000
poses were clustered in 3D with a similarity threshold of
0.7.

The question to be answered is whether the various
activity types tend to cluster together or do the 3D clusters
contain molecules of mixed activity types. The analysis is

complicated by the varying sized of the clusters, so all
member of large clusters (>2 members) were broken down
into all possible combinations of clusters of 2 molecules,
e.g., a cluster of four molecules (A,B,C,D) would break
down into six 2-molecule clusters: (AB), (AC), (AD), (BC),
(BD), and (CD). Since there are three activity types: active
(A), moderately active (M) or inactive (I), there are six
possible combinations: (AA), (AM), (AI), (MM), (MI), and
(II), whose predicted random distribution by activity type in
2-member clusters is easily calculated from the activity
populations. Comparison with the observed distribution
would then show whether molecules of the same activity
tend to cluster together, cluster preferentially with other
activity types (“cross-clustering”) or show a random
distribution.

Results

Test case

The National Cancer Institute’s (NCI) compound collection
(http://cactus.nci.nih.gov/ncidb2/download.html, August
2000, file NCI_aug00_SMI.sdz) was selected as a source
of compounds. The 250’251 SMILES strings were pro-
cessed to create a set of suitable compounds for docking.
The collection contained an unexpectedly large number of
compounds containing atoms generally not encountered in
medicinal chemistry, as well as a large number of duplicates
(Table 4). In addition, a Pipeline Pilot (SciTegic, San
Diego, CA, USA) protocol was written to reject molecules
on the basis of molecular weight, number of undefined
chiral centers and number of freely rotatable bonds, which
all together removed about one-third of the starting

Table 4 Filtering and expansion of the NCI compound collection

250,251 Starting SMILE strings
−12,966 Bad atoms (non- H, C, N, O, S, P, F, Cl, Br, I, Si)
−16,592 Duplicates
−1076 Molecular weight <150
−6690 Molecular weight >600
−21,622 > 2 undefined chiral centers
−20,213 > 8 freely rotatable bonds
161,402 Acceptable compounds (64.5%)
+59,213 Stereochemical expansion
+37,568 Alternate charge states (pKa 6–8)
−2376 Duplicates generated by expansion
255,807 Molecules to dock

Surprising was the number of duplicates (6.6%) and compounds
containing elements not usually associated with modern drug design
(5.2%). Essentially the entire periodic table was represented except for
the noble gases, the transuranics, technetium, promethium, astatine
and radium; with boron, arsenic, tin, and platinum each occurring in
more than a thousand compounds.
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compounds (Table 4). Expanding the set for undefined
chiral centers and alternative ionization states (pKa 6–8, as
determined by the “enumerate ionization states” component
of Pipeline Pilot) brought the number of structures to dock
up to 255’807. No expansion of possible tautomeric states
was done.

As protein target, HIV-1 protease was selected (liganded
with 2,5-dibenzyloxy-3-hydroxy-hexanediotic acid bis-[(2-
hydroxy-indan-1-yl)-amide]: PDB accession code 1D4I
[15]). All solvent atoms were removed, including the one
that often bridges the ligand and the flaps of the protein,
and both catalytic residues (Asp-25 and Asp-125) were left
in the deprotonated, anionic state. Docking was performed
with Glide_SP (Schrödinger, LLC, Portland, OR, USA)
with the constraint that at least one hydrogen-bond exist
between the ligand and either of the catalytic aspartate
residues. Only the single best pose per docked structure, as
measured by its overall docking score “glide_gscore”, was
taken for further analysis.

The top 10,000 docked molecules (1 pose each) were
selected and clustered in 3D as described above. 21 runs
were made varying the similarity threshold from 0.0 to 1.0
in steps of 0.05 to examine how the number and size of the
clusters generated, as well as the number of singletons,
varied (Fig. 3). As expected, with a similarity threshold of
0.0, only a single cluster of all 10000 poses was created. At
the other extreme, a similarity threshold of 1.0, no clusters
were found, only 10,000 singletons, since the structures
docked were all unique. In between, the number of clusters
slowly increases to a maximum of almost 1350 at similarity
threshold 0.55, before decreasing slowly down to zero at a
similarity threshold of 1.0. Average cluster size (discount-
ing singletons) decreases very rapidly to asymptotically
approach 2, the minimum cluster size (Fig. 3b). The
number of singletons increases slowly at first, but between
0.3 and 1.0 increases quite linearly (744 per 0.05 step with
a correlation coefficient of 0.995).

To get a qualitative impression of what a given similarity
threshold means with respect to chemical and spatial
overlap, the 20,000 top poses were clustered with a
similarity threshold of 0.5. Poses from a single very large
cluster are shown in Fig. 4 as a function of decreasing
similarity threshold. Similarity threshold 1.0 gives a single
pose, that of the cluster center. Thresholds down to 0.85
perfectly preserve the scaffold with minor substitution
changes (methyl, ethyl, halogen) and near-perfect spatial
alignment. At a threshold of 0.8 there is the first scaffold
change (dibenzofuran for biphenyl), although still with
good spatial alignment. Also at this point for the first time
the carbamate between the phenyl and biphenyl groups is
replaced (with a carbamide). At 0.75 more chemical
variation is seen, although spatial alignment is still very
good. From 0.7 to 0.6 both chemical similarity and spatial

alignment continue to deteriorate. From this example and
others, it is recommended to select a similarity threshold
somewhere between 0.7–0.8. Lower thresholds give few,
larger clusters and therefore can reduce the list of hits more,
but the pose selected to represent the cluster may no longer
be a good representative of all members of the cluster.
Higher thresholds give excellent alignment, but result in
many very small clusters and many singletons and therefore
little reduction in the hit list.

Analysis of 3D clusters vs. activity

To check whether compounds that cluster together tend to
have similar activity, the clusters of the NCI anti-viral
screened molecule set docked to HIV-1 protease were
analyzed. Docking of the 129,435 expanded structures
generated 88,499 acceptable poses. Accepting only the
single top-scoring pose per molecule gave 22,538 unique
molecular poses of which the top 20,000 were clustered in
3D using a similarity threshold of 0.7. 1789 3D clusters

Fig. 3 a) plot of the number of clusters (blue diamonds), singletons
(orange triangles), average cluster size (magenta squares) and number
of clusters + singletons (green circles) as a function of similarity
threshold for 10,000 top-docked NCI compounds docked against HIV-
1 protease. At very low similarity thresholds there are very few, very
large clusters. The number of clusters reaches a maximum at
thresholds 0.50–0.60 before decreasing again to very few, but now
very small, clusters as one approaches a threshold of 1.0. The number
of singletons also starts off very small at very low similarity
thresholds, but begins to increase rapidly at around 0.3 until only
singletons exist at a threshold of 1.0, since the docking set did not
contain any duplicate molecules. b) is a much expanded view of the
average cluster size, showing how it asymptotically approaches 2.0
with increasing similarity threshold
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were generated with sizes ranging between 2 and 17
members and containing a total of 4986 poses (24.9%).
The rest of the poses were singletons. The clustered
molecules consisted of 52 actives (0.71%), 123 moderately
actives (2.42%) and 4811 inactives (96.87%). Reducing
large clusters (>2 members) to all possible 2-member
clusters to simplify the analysis generated 6603 2-member
clusters with the following activity distribution: 221 actives
(1.67%), 301 moderately active (2.28%) and 12,684
inactives (96.05%). Note that the activity distribution has
changed because of the bias generated by large clusters. A
2-member cluster generates only a single 2-member cluster,
whereas a 17-member cluster generates 136 2-member
clusters N � N� 1ð Þ=2ð Þ.

Table 5 show the expected distribution of the 2-member
cluster activity types versus the distribution actually
observed. It is clear that molecules of the same activity
class tend to cluster together, the active compounds being
almost 43× more likely to cluster with other actives than
expected from a random distribution. Note that although the
1.02× enrichment in (II) clusters does not seem significant,
because the (II) clusters already represent 94% of all the
clusters, even if all inactives became (II) clusters, this
would represent only a 1.04x increase. It is also interesting
that there is a significant increase in observed “cross-
clustering” between active and moderately active molecules
and that “cross clustering” between active and inactive
molecules is more reduced than between moderately active
and inactive ones. These observations show that, at least in
this case, there is a strong tendency of molecules to 3D
cluster by activity class. This is even more surprising given
the fact that anti-viral activity of these molecules is defined

Table 5 Analysis of 3D clusters by activity

Theoretical A (.0167) M (.0228) I (.9605)
A (.0167) 0.000279 0.000381 0.016040
M (.0228) 0.000381 0.000520 0.021899
I (.9605) 0.016040 0.021899 0.922560

Expected A M I
A 1.8 2.5 105.9
M 2.5 3.4 144.6
I 105.9 144.6 6091.7

Observed A M I
A 79 9.5 22
M 9.5 28 113
I 22 113 6207

Enrichment A M I
A 42.90 3.78 0.21
M 3.78 8.16 0.78
I 0.21 0.78 1.02

The top table shows the proportion of the various activity combina-
tions for 2-member clusters for the three activity types A=active,
M=moderately active, I=Inactive, if they were perfectly evenly
distributed by the frequencies of their occurrence (given in the
headers). The second table shows how the 6603 2-member clusters
found should be distributed based on a perfectly even distribution of
the activity classes. The third table shows the actual observed
distribution of 6603 2-member clusters generated by docking followed
by 3D clustering. Note that each off-diagonal element is actually one-
half the observed number of cluster since each cross-cluster appears
twice in the matrix, i.e., cluster AM = cluster MA. The final table
shows the enrichment of 2-cluster types by dividing the elements of
the observed distribution (third table) by those of the expected
distribution (second table).

Fig. 4 Member poses of a large cluster of NCI molecules docked to
HIV-1 protease overlaid as a function of similarity threshold. 1.00
indicates the molecule at the cluster center. Note that the cluster center
scaffold is rigidly maintained down to a similarity of 0.80, with only

relatively minor substituent changes and very good spatial overlap.
With decreasing similarity threshold, both the chemical variability and
spatial overlap of the molecules gradually spread
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against the whole HIV-1 virus and not just the protease
under examination here.

Comparison of 2D with 3D clustering

To examine the effects of 3D clustering poses as a function
of their 2D similarity, 6 sets of high-scoring NCI
compounds docked to HIV-1 protease were generated
based on their 2D similarity. Using the functional class
fingerprint, 4 atom radius (FCFP_4) of Pipeline Pilot,
compound sets were generated with similarity thresholds of
0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. Each set had 65 compounds,
this limit being determined by the maximum number of
compounds in the most restrictive set (0.7 similarity). For
the larger sets, compounds were randomly selected to give
exactly 65 members each. Each of these sets were then
clustered in 3D varying the 3D similarity thresholds from
0.5 to 0.9 in steps of 0.1 and observing the number of 3D
clusters formed and singletons generated. These sets were
then plotted by the number of clusters and singletons found
as a function of their 2D and 3D similarity thresholds
(Fig. 5). At the most stringent 3D similarity threshold (0.9),
only with a molecule set with 2D similarity of 0.4 or higher
are any clusters found. Even at 0.7 2D similarity, over a

third of the molecules are singletons when clustered with a
3D similarity threshold of 0.9. At the other extreme, the
number of clusters generated with a 3D similarity threshold
of 0.5 does not vary much as a function of 2D similarity,
although the size of the clusters, and concurrently the
number of singletons, changes dramatically in going from a
2D similarity threshold of 0.3 (average cluster size 2.4, 46
singletons) to 0.4 (average cluster size 8.1, 8 singletons). It
is clear from this analysis that high 2D similarity is
required, but not necessarily sufficient for high 3D
similarity: a similar binding mode (spatial overlap) is also
required.

Performance and limitations

All execution time tests were performed on a Hewlett-
Packard xw-8000 Linux workstation with 2 Intel Xeon
CPUs (3.2 GHz, 1 MB cache each) and 1 GB RAM. The
program is not parallelized, but two separate runs of the
program can be carried out simultaneously on the worksta-
tion without performance degradation. The program per-
forms two basic operations: calculation of an N × N
similarity matrix, where N is the number of poses to be
clustered, and clustering the poses based on these similar-
ities and a user-supplied similarity threshold. The speed of
calculating of the similarity matrix was increased by
ignoring hydrogen atoms (although using their presence or
absence to define the function class of the parent heavy
atom) and only calculating the similarity of the larger
against the smaller of each pose pair. The clustering
algorithm works by sequentially finding cluster centers
with the most poses within the similarity threshold. Each
pose is scored according to the number of other poses with
a similarity score greater than the threshold and the
similarity score itself, ignoring poses already assigned to
previously defined clusters. This was originally rescored
after each new center was located, but proved to be quite
slow. Re-writing the algorithm to ignore known singletons
altogether and to calculate this score just once, but then
subtract the contributions from newly discovered cluster
members as they are allocated, produced an enormous
speed-up, especially for very large pose sets (up to 100×).
Figure 6 shows the execution time for the two steps,
similarity calculation and clustering, varying with the
number of poses to be clustered. Care was taken to ensure
that the average molecular size was similar in each set
(22.5–22.8 non-hydrogen atoms). Both processes increase
roughly as the square of the number of poses to be
clustered, although the time needed to generate the
similarity matrix is roughly 45× longer than for clustering.
For this reason it was made possible to export the similarity
matrix as an ASCII text file so that re-running the program
for the same pose set, e.g., with a different similarity

Fig. 5 Number of a) clusters and b) singletons as a function of 3D
similarity threshold for 6 sets of 65 molecules generated by varying
2D similarity thresholds from 0.2 to 0.7. The number of clusters and
singletons are colored white-yelloworange-red with increasing size for
clarity. An obvious increase in the number of 3D clusters and
consequent decrease in singletons are seen for the sets of compounds
with increasing 2D similarity with the largest jump being between
compounds generated with a 2D similarity of 0.3 and those generated
with a 2D similarity of 0.4
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threshold, and reading in the similarity matrix rather than
re-calculating it would be significantly faster. In fact, this
reduced the overall execution time 15-fold.

Because cluster membership is assigned sequentially as
highly populated cluster centers are located, it may be that a
pose actually fits better in a later defined cluster. To check
for this, a final refinement step is performed to assign each
pose to that cluster where its similarity is highest to the
cluster center. Figure 7 show how the cluster sizes are
changed in a case where 2000 poses were clustered with a
similarity threshold of 0.4 before and after refinement. In
this particular case 22.0% of the poses changed their cluster
membership, resulting in an improvement in the average
similarity (excluding cluster centers) from 0.4749 to
0.4908. These effects are far less dramatic at higher
similarity thresholds where the “membership criteria” are
more stringent to begin with. In the same case above, but
with a similarity threshold of 0.8, only 1.5% of the poses
changed cluster during refinement with no significant
increase in the average similarity.

The program can currently only read molecular poses in
SDF format. Hydrogen atoms are ignored. There is a limit
of 20,000 poses that can be clustered. This is because the
entire similarity matrix (up to 4×108 elements) is held in
RAM during execution. Each pose can have no more that
200 atoms, including hydrogen atoms. This corresponds to
molecules of roughly 1600 Dalton and should cover almost
all compounds likely to be encountered in drug discovery.
Only molecules composed of C, N, O, S, P, F, Cl, Br, I and
Si have atoms with defined functional classes. Hydrogen
atoms are accepted, but ignored, except in defining the
functional class of their parent heavy atom. If the protein to
which the molecules were docked is read in for weighting
the individual atoms according to their interactions with the

protein, this must be in protein data base (PDB) format. Up
to 10,000 non-hydrogen protein atoms (ca. 1250 amino acid
residues) can be read in.

Discussion

A FORTRAN program has been described that allows the
clustering of up to 20,000 docking poses based on both
their chemical similarity and 3D spatial overlap. This
should be superior to clustering based on 2D chemical
descriptors alone, since in addition to these, one is also
including information about the predicted binding mode.
This clustering can be used to reduce a list of top scoring
docking poses by selecting a single or few representative
compounds from each cluster for biological testing. It is
possible to weigh the contribution of the individual atoms
of a pose based on the number of interactions it is making
with the target protein, i.e., by its contribution to binding.
Tests have shown that 3D similarity thresholds between 0.7
and 0.8 give poses that overlap well visually, yet produce
clusters that are large enough to give a significant reduction
in the hit list. Calculation of the similarity matrix is quite
slow compared to the time required for the cluster poses
based on this matrix, however, once the matrix has been
calculated it is possible to export it so that for future runs,
e.g., with different similarity thresholds, it only needs to be
imported. This is about 15× faster altogether than re-

Fig. 7 Cluster size before (dotted blue line) and after (solid magenta
line) refinement for 2000 poses with a similarity threshold of 0.4.
Since cluster centers are assigned according to the number of other
molecules that would cluster with it, it is not surprising that before
refinement the first cluster is the largest, steadily decreasing to the
minimum cluster size of two. The refinement step assigns members to
the closest cluster center, not the one that first picked it up, essentially
taking from the rich and giving to the poor, but only if the poor (small)
cluster center is actually more similar to the molecules in question. In
this particular case, it can be seen that the first cluster has lost almost
half of it members to smaller clusters, while two minimal clusters
(clusters 164 and 190) grew to over ten members. Note that for real-
life cases the clustering threshold would be higher (usually 0.7–0.8)
and the number of molecules changing cluster would be much smaller

Fig. 6 Execution times as a function of the number of poses to be
clustered: similarity matrix generation (blue diamonds), clustering
(orange triangles) and total execution time (brown X’s). Also shown
are the times when the similarity matrix from a previous run is read in,
instead of being recalculated (magenta circles) and the total execution
time in this case (green stars)
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calculating it. Within the limitations of the program (≤
20,000 poses, each with ≤ 200 atoms, no “weird” atoms)
the program is very robust.
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